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Abstract— A quadrotor is a type of Unmanned Aerial Vehicle 

(UAV) that is popular for its vast applications due to its small size 

and maneuverability. UAVs fall under the category of drones. 

Drones are unmanned aircrafts or ships guided by remote control 

or on-board computers. They are high in demand because of their 

deployment for surveillance, product delivery, aerial photography 

and defence applications.   Implementing a control system on a 

quadrotor can be very challenging due to its nonlinear functioning. 

Thus the motivation of this paper is to successfully implement the 

PID algorithm on the plant to achieve altitude and attitude control. 

This paper also compares a linearized plant system of the 

quadrotor with that of a nonlinear plant system.  

A mathematical model for the quadrotor, progressing from a 

uni dimensional to a three dimensional configuration has been 

derived. Newton-Euler equations have been used to develop the 

dynamic model. The simulation are carried out in 

MATLAB/SIMULINK environment and different PID controller 

tuning methods have been looked into for smoother control 

Keywords- Modelling, Matlab Simulink, PID Controller, 

Quadrotors, Simulation 

I.  INTRODUCTION  

Quadrotors are a class of Unmanned Aerial Vehicles 
(UAVs) which are small and offer great manoeuvrability. They 
are also classified as Vertical Take-Off and Landing (VTOL) 
vehicles. Quadrotors are built for several different purposes 
encompassing carrying payloads and deliveries, surveillance, 
recreational purposes, photography, videography, and for 
defence applications to name a few. While the structure of the 
quadrotor changes according to its purpose, the general 
structure remains the same. A quadrotor, aptly suggested by its 
name, has 4 motors which are equidistant from its centre, which 
is where the centre of mass lies. They make use of the 4 motors 
for take-off, landing and other kinds of manoeuvring in the air.  

As estimated in a study by Goldman Sachs, the drone 
market is estimated to be worth $100 billion by the end of 2020, 
with the defence sector being responsible for $70 billion, 
consumer market being worth $17 billion and the commercial 
and civil market being worth $13 billion. All major companies 
are trying to automate their processes with robotics for 
enhanced efficiency and accuracy. Quadrotors, being reliable, 
are being used in numerous sectors. Further details on the 
application and scope of the industry can be found in [1]. Below 

is a flow chart diagram explaining the approach taken to 
implement the proportional integral and derivative (PID) 
controller to successfully to achieve attitude and altitude control 
on the quadrotor. 

 

Fig. 1.  Control System overview flowchart. 

Relevant research papers have been referred to, for primary 
information along with other articles, videos and courses which 
have been referenced [2] [3] [4].  

II. SCOPE OF THIS PAPER 

The goal of this paper is to utilize existing work on the 
mechanics and dynamics of quadrotors [5] [6] to successfully 
model and simulate a quadrotor in Simulink Matlab [7]. We will 
be ignoring some of the more complicated effects while 
modelling the quadrotor. These can be found in [8] Furthermore, 
this paper will begin with modelling and simulating a quadrotor 
in 1-dimension and build to a 3-dimensional simulation to allow 
for proper understanding on which the PID [9] algorithm will be 
implemented to achieve attitude and altitude control in each 
case. Gain tuning will be discussed briefly for PD and PID 
models in each case. Furthermore, few graphs will be shown to 
highlight the difference between a nonlinear plant and a 
linearized one. Finally, desired outputs versus actual outputs will 
be looked at and the degree of success of the modelling and 
simulation will be determined. 
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III. 1-D MODELLING AND SIMULATION OF QUADCOPTER 

A. Mechanics and Quadrotor Dynamics  

For one dimensional analysis of the drone, we shall 
investigate the altitude control such that the quadrotor is only 
allowed to move in the Z direction. Furthermore, the drone will 
be considered symmetrical around the centre of mass and the X 
and Y axes. The equation of motion along the Z axis for a 
quadrotor can be derived from the figure below. 

 
Fig. 2.  1 Dimensional quadrotor force body diagram 

 

  ��� �   ��

�
� 	                                                                    (1) 

 

Here U1 is the thrust generated by the drone motors. Mg is 
the force applied by gravity and Ma is the net acceleration 
caused. z’’ is the net acceleration in z direction.                          

B. Simulink Implementation 

To successfully simulate a system, there are two parts one 
must take care of, the plant system, and its control. The plant 
describes the behaviour of the quadrotor and will be replicated 
by using equation (1), which will give the Z value for 
calculating the error and feeding it to the PID controller. The 
controller will be tuned to minimize error between the desired 
and actual Z value. 

 

Fig. 3.  Implementation of (1) 

With the PID controller implemented, the overall system looks 

like this. 

 

Fig. 4.  1D PID implementation on Quadrotor plant 

C. Gains and PID 

Equation (1) will be used as the plant equation and a control 

system will be developed around it to get the desirable output.  

PID algorithm or the PID controller is a controller that uses 
the sum of the error multiplied by the coefficients Kp, Ki and Kd 
to elicit a response well within the design parameters of the 
system. MATLAB Simulink provides a readymade PID block, 
but one could easily make a block as per the applications. 

We will use the provided block and after tweaking the gain 

coefficients a bit, the following results were the ones that lead 

to an acceptable response. 

D. System Response using PD and PID controllers 

 

Fig. 5.  Step response with PD implementation 

 

The system response using PD and PID controllers is shown 

in figure 6 and 7 respectively. While the PD controller leaves a 

steady state error, a PID controller causes the peak overshoot to 

be higher and a decrease in the rise time. To compensate for 

this, often the PID controller has a lower P gain than a PD 

controller. 

Compared to the PD graph above, the PID graph barely 

has any steady state error and a slightly higher peak overshoot 

which can be combated by using a lower P gain or a reduced 

D gain. 

 
Fig. 6.  Step response with PID implementation 

IV. 2-D MODELLING AND SIMULATION OF QUADROTOR 

A. Mechanics and Quadrotor Dynamics 

In this section, the mechanics of a quadrotor fixed in the ZY 

TABLE I.  PID GAINS OF SYSTEM ABOVE 

 
Constants Gains 

Kp 50 

Ki 25 

Kd 10 
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plane will be explored. All our previous discussions about the 
symmetry and behaviour still hold. Although now, the 
quadrotor can move freely in the ZY plane which leaves us with 
three variables z, y and ɸ (Roll Angle). 

 
Fig. 7.  Planar Quadrotor diagram 

 
From the free body diagram in fig 7, one can derive the 

equations for y’’, z’’ and ɸ’’ in which U1 is the thrust input 
and U2 is the moments input. 
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Extending (3), (4) and (5) : 
 
#�$

#%�  = 
′′ = 
���

�
sin �                                                           (7)             

#�&

#%� = �′′ = �	 � ��

�
cos �                                                   (8)          

#��

#%�  = �′′ = 
��

���
                                                                     (9)      

B. Linearization 

In the situation of the quadrotor hovering, the angle ɸ 
changes nominally. Hence one can linearize the above 
equations by applying the small angle approximations: 
 

#�$

#%�  = 
′′ = �	�                                                               (10) 

#�&

#%� = �′′ = �	 � ��

�
                                                          (11) 

 

Equation (9) is already in the linearized form. 

C. Simulink Implementation 

Now we shall compare with the linear model and will 
provide an insight into how well the approximation holds. For 
the linear plant system, (9), (10), and (11) will be implemented 
and for the nonlinear plant system, equations (7), (8), and (9) 
will be implemented. Below is the nonlinear implementation. 

 
Fig. 8.  Implementation of nonlinear plant system 

 
Finally, after implementing the PID controller on the plant 
system we can observe the step responses. 
 

D. Gains and PID 

In the 2D system, there are 3 PID blocks to control the 
error of all the 3 variables that are being worked with – z, y 
and ɸ. The aim will be to control z and y and let ɸ vary 
independently to provide the desired y output since y and ɸ 
are dependent on each other. Another important thing to take 
care of in nested PID loops is that the internal loop should 
always have higher gains than the external ones to provide 
effective responsiveness. Below are the gains for the PID 
loops. 

 
TABLE II.  PID GAINS OF SYSTEM ABOVE 

 ɸ y z 

Kp 100 45 40 

Ki 0 20 30 

Kd 100 10 15 

 

E. System Response of Linear and Nonlinear Systems 

For the simulation described above, the system responses 
are shown. Below are the system responses for the altitude 
control of the linear system. 

 
Fig. 9.  Step response of z in linear system 

 
We can compare this approximation to the actual nonlinear 

implementation. Below is the system response for altitude 
control for the nonlinear implementation of the plant. As we 
can see the settling time is higher and the responsiveness of 
the system seems a bit more delayed. 
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Fig. 10.  Step response of z in nonlinear system 

 
The step response of y is almost identical in both the 

nonlinear and linear implementation and for the sake of 
brevity is not included here. 

V. 3-D MODELLING AND SIMULATION OF QUADROTOR 

A. Mechanics and Quadrotor Dynamics 

In this section, the mechanics of how a quadrotor functions 
in the 3-dimensional space is explored. The position of the 
quadrotor can be defined by [x y z] and the orientation of the 
quadrotor can be described by [ɸ θ ψ] which constitute the roll, 
pitch and yaw and represent rotations about the X, Y and Z axes, 
respectively. The distance from the body frame to the inertial 
frame will be represented by r = [x y z]T. If one describes a 
movement with roll first, followed by pitch and finally yaw then 
the multiplication of each of the individual matrices will lead to 
the following matrix. 
 

' �  
()(* +�+)(* (�+)(* � +�+*
()+* +�+)+* � (�(* (�+)+* � +)+*
�+) +�() (�()

         (12) 

 
c is the shorthand for cosine and s is the shorthand for sine here. 
The rotational equation of motion can be written as follows  
 

,- = ./� � ./ � ,	                                                       (13) 

Where: 

J = Inertial Matrix which because of the symmetry around the 

centre is 

        Ixx    0     0 

        0     Iyy    0                    

        0      0     Izz       

ω = Angular Rates of Velocity 

Mg = [0 0 JrΩr]T = Gyroscopic moments                            (14) 

Ωr = Relative motor speed. 

Mb = Moments acting on the body frame 

Now one can look at the moments acting on the quadrotor (Mb) 

     01  = 
 

"
234%'"Ω1

"                                                           (15) 

     ,1 = 
 

"
234#'"Ω1

"                                                          (16) 

Where: 

     ρ = Air Density 

     A = Area swept by the blades 

     Ct, Cd = Coefficients 

     R = Radius of the blades 

     Ωi = Angular Velocity of motor 

Equations (15) and (16) can be written as 

      01 =  67Ω1
"                                                                                                      (17) 

      ,1 = 6�Ω1
"                                                                    (18)  

 

Fig. 11.  Forces and Moments acting on the Quadrotor 

Now calculating the moment about the X,Y and Z axes from 

Fig.13 
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Combining (19), (20), and (21) 
  

                                   967<Ω:
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The translational motion of equation take the general form:  
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Fb represents all the non-gravitational forces acting in the body 

frame and is given by 

                                           0  

Fb =                                0                                                 (24)  

                    -67�Ω 
" � Ω"

" �  Ω;
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" � 

Fbz =   F1 + F2 + F3 + F4                                                    (25)  

which converts to the equation above. Positive z direction is 

assumed in direction of gravity. 

B. State Space Representation 

Now that the forces and moments acting on the body of the 
drone have been discussed, one can convert these equations into 
state space form which will be implemented to simulate the 
behaviour. State vector X can be represented as [x1 x2 x3 x4 x5 
x6 x7 x8 x9 x10 x11 x12]T which can be mapped to X = [ɸ ɸ’ θ θ’ 
ψ ψ’ x x’ y y’ z z’]T 

The control input U = [U1 U2 U3 U4] can be written as 
shown below 

U1 = 67�Ω 
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" �                                               (26) 
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" �                                                        (28) 

U4 = 6��Ω 
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" � Ω;
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From equations (26) to (29), a coefficient matrix can be formed 

            

! 
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"

Ω"
"
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"
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                 (30) 

Equation (30) can be rearranged so that the coefficient matrix 

for motor speeds can be found from control vector U. 

             Ω1
2        1/4Kf    0    1/2Kf     1/4Km    U1 

             Ω2
2   =   1/4Kf   -1/2Kf   0    -1/4Km    U2                (31)  

             Ω3
2        1/4Kf    0    -1/2Kf    1/4Km    U3    

              Ω4
2        1/4Kf    1/2Kf    0   -1/4Km    U4        

Expanding and solving (13),(14), and (22) 
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These provide the rotational equations. The translational 

equations can be derived from expanding (23) and using (12), 
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Expanding and rewriting, 

    A′′ = 
���

�
�(G+�+HI)(G+* � +HI�+HI*�                          (36) 
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This can be rewritten in state space form as,  

    A′′ = 
���

�
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C. Simulink Implementation 

The parameters used for the simulation are listed below. 

Parameter Value Unit 

L 0.24 m 

M 1 kg 

g 9.81 m/s2 

Ixx 0.01 kg m2 

Iyy 0.01 kg m2 

Izz 0.02 kg m2 

Kf 1.87 x 10-6    - 

Km 1.87 x 10-6    - 

Equations (32), (33), and (34) will be implemented to 
achieve the roll pitch and yaw accelerations which in turn will 
provide the roll, pitch and yaw angles.          

                      
Fig. 12.  Implementation to get roll acceleration, ɸ’’. 

Similarly one can implement the other equations for angular 
and linear accelerations. Equations (36), (37), and (38) will be 
implemented to give us the outputs x, y and z accelerations 
which can be integrated twice to provide the actual positions. 
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Note that the following are the nonlinear implementations and 
to implement a linearized linear accelerations subsystem, one 
can apply the small angle approximations described previously. 

Fig. 14.  Implementation to get relative motor speed, Ωr from control inputs, 

Ui. 
Now one can connect these subsystems with each other so 

that the behaviour of the drone i.e., the plant system, is now 
entirely modelled. Once the plant system is ready, the PID 
control system will be implemented on the plant to achieve 
altitude and attitude control. The gains used are mentioned in 
the next section.  

D. Gains and PID 
To achieve altitude control a PID controller has been 

applied on U1 and to achieve attitude control 3 PID controllers 
have been applied on U2, U3 and U4 to get the desired ɸ, θ, and 
ψ values. The gains for all the PID controller loops have been 
shown below. These gains can be different based on what 
parameters are acceptable to the user. These controllers can be 
just PD controllers as well, which was demonstrated earlier in 
2D simulation. 

TABLE III.  PID GAINS OF SYSTEM ABOVE 

 z ɸ θ ψ 

Kp 800 110 16 8 

Ki 300 50 10 10 

Kd 25 3 10 2 

E. System Response for Attitude and Altitude Control  

This section contains the system responses from the 
implementation of the 3D plant and one can observe the 
efficiency of the implemented control system used to achieve 
altitude and attitude control of the quadrotor.  

 

Fig. 15.  Step response of roll angle, ɸ 

 

 
Fig. 16. Step response of pitch angle, θ 

 

 
Fig. 17  Step response of yaw angle, ψ        

 

The responses for altitude control are given in the figures 18 

and 19 for linear and nonlinear implementation, respectively. 

 
Fig. 18.  Step response of Z in linear case 

 

Fig. 19.  Step response of Z in non-linear case 
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It is observed that attitude control implementations are 
identical in both the linear and nonlinear models.  However, 
altitude control has a huge difference and so the small angle 
approximation is not one that is appropriate here. Further 
methods or techniques must be looked into to provide a 
smoother and more robust altitude controller for the 3D 
nonlinear plant system. The results from the simulation are 
tabulated below. 

TABLE IV.  RESULTS OF SIMULATIONS 

Attribute Settling 
Time (ms) 

Rise Time 
(ms) 

Peak 
Overshoot (%) 

Nonlinear 
Altitude 

413.0 179.7 14.2 

Linear Altitude 214.9 35.8 13.0 

Roll 195.7 52.5 12.1 

Pitch 837.2 9.3 30.2 

Yaw 499.5 18.8 21.7 

VI. CONCLUSION AND FUTURE RESEARCH 

As seen, one can quite accurately simulate the behavior of a 
quadrotor discounting a few effects that would unnecessarily 
complicate the physics. While the simulations are fairly 
accurate and the PID algorithm is good enough to elicit the 
desired response from the drone, this only provides us with a 
starting point while building and testing a drone. Furthermore, 
the nonlinear altitude control needs to be improved. It would 
require a lot of further tweaking of the gains as the physics that 
has been used for the simulation involve approximations. 
Upcoming research will be based on the different optimization 
tools to precisely predict the gain values such as reinforced 
learning, genetic algorithms, and swarm optimization etc. 

Lastly, motion planning and environment tracking remain areas 
that need to be explored further for nuanced control of the drone 
in its surrounding environment. 
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